# How Electricity Works

How Electricity Works is a very common question. Electric power is as common to us as running water in many areas, especially in industrialised countries. Despite this, there is a great deal of ignorance about this strange force and how it comes about.

If you can picture an atom as a sphere, imagine how electricity works in the nucleus in the centre that contains at least one proton and at least one neutron. The proton is positively charged. In orbit around the nucleus is at least one electron which is negatively charged. The reason they have these opposite charges takes us deep into quantum physics. We know that the neutron is made up of quarks and the electron is an elementary particle (it is not made up of anything and is a particle in its own right), but the reason why they have opposite charges is a matter beyond my meagre capabilities and, in any case, this area is at the fringes of human knowledge.

Atoms may contain several protons and electrons. This variation is what separates elements from each other and how electricity works. Although described as sub-atomic particles, electrons have the properties of both particles and waves. In theory at least they could be both at the same time.

If an atom has no electric charge, i.e. it is neutral, then it contains the same amount of protons as electrons. In some materials - most metals for example - the electrons' orbit around the nucleus is quite loose and they can spin away from the atom. When this happens the atom becomes positively charged because protons are in the majority within the atom. A free electron can join another atom. When this occurs then its new host atom becomes negatively charged because the electrons are in the majority (assuming the atom was neutral in the first place).

When it comes to asking how electricity works, The key thing to remember here is that opposites attract. The greater the difference between the number of electrons and protons, the greater the attraction will be. This is called potential difference. If we therefore can manage to produce a negative charge at one end of a copper wire and a positive charge at the other end, free electrons would move towards the positive end. As electrons leave those atoms nearest the positive end, they leave behind positively charged atoms. Electrons from neighbouring atoms will be attracted towards these positive atoms thus creating yet more positive atoms in their wake. This continuing transfer of electrons is called current. The greater the potential difference, or voltage to use its measuring unit, the greater the force of the flow of electrons - or current.

Electric power can be supplied as direct current (e.g. from car batteries) or as alternating current (e.g. household mains).

Often an electrical product requires a different voltage to the one that is supplied from mains electric power. In these cases, a transformer is required. The use of transformers is very common along power lines and in electrical devices. As well as the step-up transformers that increase voltage - transformers can also reduce voltage. These step-down transformers can be found at utility substations where the very high voltages required to push electrons through long transmissions wires are reduced for local consumption.

How electricity works information

Subscription

Training Courses
 Integrated Building Electrical SystemsJanuary 18-19, 2017 - Saskatoon, SKJanuary 23-24, 2017 - Richmond, BCJanuary 25-26, 2017 - Edmonton, AB 1-Day Low Voltage Arc Flash/Electrical Safety TrainingJanuary 18, 2017 - Edmonton, ABJanuary 23, 2017 - Mississauga, ON 2-Day Low Voltage and MV/HV Electrical SafetyJanuary 23-24, 2017 - Mississauga, ON 1-Day MV/HV Electrical Safety TrainingJanuary 24, 2017 - Mississauga, ON 2015 Electrical Code Update TrainingJanuary 30-31, 2017 - Mississauga, ONFebruary 1-2, 2017 - Edmonton, AB UPS and Battery Systems TrainingFebruary 2-3, 2017 - Richmond, BCFebruary 6-7, 2017 - Edmonton, ABFebruary 8-9, 2017 - Mississauga, ONFebruary 13-14, 2017 - Winnipeg, MB Modern Electrical Substation Design, Protection, MaintenanceFebruary 14-15, 2017 - Richmond, BCFebruary 16-17, 2017 - Edmonton, ABFebruary 22-23, 2017 - Mississauga, ON Industrial Power System Engineering WeekFebruary 20-24, 2017 - Richmond, BCMarch 6-10, 2017 - Mississauga, ONMay 15-19, 2017 - Calgary, AB Electric Motor Design, Protection and MaintenanceFebruary 28-March 1, 2017 - Richmond, BCMarch 2-3, 2017 - Edmonton, ABMarch 6-7, 2017 - Saskatoon, SKMarch 8-9, 2017 - Winnipeg, MBMarch 13-14, 2017 - St. Johns, NLMarch 16-17, 2017 - Mississauga, ON Electrical Relay Protection and ControlApril 4-5, 2017 - Richmond, BCApril 6-7, 2017 - Edmonton, ABApril 10-11, 2017 - Winnipeg, MBApril 12-13, 2017 - Mississauga, ON 2-Day Electrical Grounding for Industrial ApplicationsApril 17-18, 2017 - Edmonton, ABApril 24-25, 2017 - Richmond, BCApril 27-28, 2017 - Winnipeg, MBMay 1-2, 2017 - Mississauga, ON 5-Day Edmonton Grounding WeekApril 17-21, 2017 - Edmonton, AB 1-Day HV Utility-Industrial Electrical GroundingApril 19, 2017 - Edmonton, ABApril 26, 2017 - Richmond, BCMay 3, 2017 - Mississauga, ON Electrical Grounding for Oil-Gas ApplicationsApril 20-21, 2017 - Edmonton, AB MV-HV Industrial Electrical Maintenance/Safety PracticesMay 1-2, 2017 - Richmond, BCMay 4-5, 2017 - Edmonton, ABMay 9-10, 2017 - Winnipeg, MBMay 11-12, 2017 - Mississauga, ONMay 15-16, 2017 - St. Johns, NL 5-Day Toronto Grounding WeekMay 1-5, 2017 - Mississauga, ON 2-Day Electrical Grounding For Telecommunication NetworksMay 4-5, 2017 - Mississauga, ON

Affiliates

Featured Product
 Condenser Tube Plugs Conklin-Sherman Co., Inc. Adjustable and Push Pull Type Plugs. ... more