FERC may go after Enron profits

By


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
U.S. Federal regulators may seek to recover as much as $1.9 billion on behalf of Western power customers in the Enron Corp. bankruptcy case.

Federal Energy Regulatory Commission staff, who have been examining the trading schemes Enron employed in the West, contend the once-mighty energy giant should be forced to relinquish all profits earned in that region between January 1997 and June 2003.

"Enron's extensive fraudulent activity justifies disgorgement of all its Western-market-based profits," agency staff member Craig Deters testified recently.

During that six-year period, Enron Power Marketing and Enron Energy Services racked up profits of anywhere from $1.68 billion to $1.87 billion, calculates Randolph Barlow, a financial analyst at the agency.

Asked about the staff's analyses Monday, Jennifer Lowney, a spokeswoman for Enron, said, "We're aware the testimony has been filed, and we're currently reviewing it."

Last summer, the commission ordered Enron to cough up $32.5 million in profits after learning the company had tried to manipulate the power market by failing to disclose a business relationship with El Paso Electric Co. starting in January 1997.

At times, Enron operated El Paso's power marketing desk and had control over the availability and price of El Paso's wholesale electric power.

But the commission didn't stop with the Enron-El Paso relationship. Instead, the agency ordered a more comprehensive look at Enron's behavior in the Western markets.

Officials in the Western states have long argued the antics of Enron's Western power trading desk exacerbated an electricity crisis in 2000 and 2001 that sent blackouts rolling across California. And they've been clamoring for compensation.

"The writing's on the wall," Sen. Maria Cantwell, D-Wash., said Monday. "Now the commission needs to act to make sure that the same consumers who have already paid the price for Enron's manipulation schemes won't have to pay yet again."

A FERC administrative law judge is scheduled to hold a hearing on the Enron matter in June and then issue an initial opinion in October. The full commission would then have to take up the matter.

But Enron's assets are controlled by the U.S. bankruptcy court. If the commission were to decide to try to recover the profits, the agency would have to line up with other creditors in the bankruptcy case.

Assuming the agency met all the legal requirements for pursuing a claim in the bankruptcy proceedings, the agency would likely join the mass of unsecured creditors in the case, said Martin Bienenstock, the company's lead bankruptcy lawyer.

The bankruptcy court is to begin dispersing payments in June. Creditors are receiving only a fraction of what they're owed, between 18 cents and 22 cents on the dollar.

Related News

BloombergNEF: World offshore wind costs 'drop 32% per cent'

Global Renewable LCOE Trends reveal offshore wind costs down 32%, with 10MW turbines, lower CAPEX and OPEX, and parity for solar PV and onshore wind in Europe, China, and California, per BloombergNEF analysis.

 

Key Points

Benchmarks showing falling LCOE for offshore wind, onshore wind, and solar PV, driven by larger turbines and lower CAPEX

✅ Offshore wind LCOE $78/MWh; $53-64/MWh in DK/NL excl. transmission

✅ Onshore wind $47/MWh; solar PV $51/MWh, best $26-36/MWh

✅ Cost drivers: 10MW turbines, lower CAPEX/OPEX, weak China demand

 

World offshore wind costs have fallen 32% from just a year ago and 12% compared with the first half of 2019, according to a BNEF long-term outlook from BloombergNEF.

In its latest Levelized Cost of Electricity (LCOE) Update, BloombergNEF said its current global benchmark LCOE estimate for offshore wind is $78 a megawatt-hour.

“New offshore wind projects throughout Europe, including the UK's build-out, now deploy turbines with power ratings up to 10MW, unlocking CAPEX and OPEX savings,” BloombergNEF said.

In Denmark and the Netherlands, it expects the most recent projects financed to achieve $53-64/MWh excluding transmission.

New solar and onshore wind projects have reached parity with average wholesale power prices in California and parts of Europe, while in China levelised costs are below the benchmark average regulated coal price, according to BloombergNEF.

The company's global benchmark levelized cost figures for onshore wind and PV projects financed in the last six months are at $47 and $51 a megawatt-hours, underscoring that renewables are now the cheapest new electricity option in many regions, down 6% and 11% respectively compared with the first half of 2019.

BloombergNEF said for wind this is mainly down to a fall in the price of turbines – 7% lower on average globally compared with the end of 2018.

In China, the world’s largest solar market, the CAPEX of utility-scale PV plants has dropped 11% in the last six months, reaching $0.57m per MW.

“Weak demand for new plants in China has left developers and engineering, procurement and construction firms eager for business, and this has put pressure on CAPEX,” BloombergNEF said.

It added that estimates of the cheapest PV projects financed recently – in India, Chile and Australia – will be able to achieve an LCOE of $27-36/MWh, assuming competitive returns for their equity investors.

Best-in-class onshore wind farms in Brazil, India, Mexico and Texas can reach levelized costs as low as $26-31/MWh already, the research said.

Programs such as the World Bank wind program are helping developing countries accelerate wind deployment as costs continue to drop.

BloombergNEF associate in the energy economics team Tifenn Brandily said: “This is a three- stage process. In phase one, new solar and wind get cheaper than new gas and coal plants on a cost-of- energy basis.

“In phase two, renewables reach parity with power prices. In phase three, they become even cheaper than running existing thermal plants.

“Our analysis shows that phase one has now been reached for two-thirds of the global population.

“Phase two started with California, China and parts of Europe. We expect phase three to be reached on a global scale by 2030.

“As this all plays out, thermal power plants will increasingly be relegated to a balancing role, looking for opportunities to generate when the sun doesn’t shine or the wind doesn’t blow.”

 

Related News

View more

Chinese-built electricity poles plant inaugurated in South Sudan

Juba Power Distribution Expansion accelerates grid rehabilitation in South Sudan, adding concrete poles, medium and low voltage networks, and LED street lighting, funded by AfDB and executed by Power China for reliable, affordable electricity.

 

Key Points

A project to upgrade Juba's grid with concrete poles, MV-LV networks, and LED lighting for reliable, affordable power.

✅ 13,350 concrete poles produced locally for network rollout

✅ Medium and low voltage network rehabilitation and expansion

✅ LED street lighting and customer care improvements funded by AfDB

 

The South Sudan government has launched a factory producing concrete poles that will facilitate an ambitious project done by a Chinese company to rehabilitate and expand the Power Distribution System in Juba, its capital.

The Minister of Dams and Electricity, Dhieu Mathok, said that the factory, rented by Power China, will produce some 13,350 poles for the electricity distribution in the capital and other states.

"The main objective of this project is to increase the supply capacity and reliability of the power distribution system in Juba. Access to the grid will replace the use of generators by the population, allow supply of energy at more affordable price and, hence contribute toward economic growth and poverty eradication in South Sudan," Mathok said during the inauguration of the plant along the Yei road in Juba.

#google#

He disclosed that it will help solve the problem associated with non-availability of concrete poles for the project and to mitigate the risk of importing poles from other countries.

"This factory will create positive impact on the construction of the national grid in South Sudan. It is owned by South Sudanese business people but currently it has been taken over by Power China for a brief period of one year," he said.

South Sudan is largely generator driven economy with continued electricity blackout, and across the continent initiatives like Cape Town's municipal power build-out illustrate alternative approaches, in the wake of the collapse of the generator power plant operated by the South Sudan Electricity Corporation (SSEC) in 2013.

Wang Cun, an official with Power China said they got the contract to build the electricity project in June 2016 and that they will continue to support South Sudanese staff with skills and knowledge, drawing on advances such as PEM green hydrogen R&D that point to future low-carbon options, and also work with the government on several major power projects.

"We have achieved much from these projects and we also suffered much from the instability and continuous conflicts all these years, but we confirm and believe the year of 2018 will be a year of peace and development in South Sudan," Wang said, adding that the company has been operating in South Sudan since 2009.

He disclosed that Power China has conducted several projects before South Sudan won independence from Sudan in 2011 such as the peace road project from Renk to Malakal, Maridi water plant and Malakal municipal road projects.

Wang said they will immediately reorganize all necessary resources to increase post-production capacity and immediately shall commence the erection of these poles to all corners of Juba city and start the distribution.

"We shall do as we did before to recruit more local technicians, engineers and laborers during the construction period, so that they are there in place for similar projects in the near future. We shall make more efforts to improve these local staffs' working environment and to realize sustainable development of Power China and Sino-hydro in South Sudan," said Wang.

Power China has been committing itself in the economic development of South Sudan and has signed eight commercial contracts with the government of South Sudan since independence like the Juba-hydro power project and the Tharjiath thermal power plant project, while in China projects such as the Lawa hydropower station demonstrate ongoing hydropower expertise that can inform regional work.

Liu Xiaodong, the Charge d'Affaires at the Chinese embassy in South Sudan, said Power China has been working very hard in the engineering and procurement in the earlier stage of the project, and as China expands energy ties such as nuclear cooperation with Cambodia that demonstrate broader engagement, also thanked the South Sudan government and the African Development Bank for their strong support.

Liu added upon completion Juba will have an upgraded power distribution system with 2,250 lighting points along the main roads in the capital and lamps will be LED ones.

The project falls under the Juba Power Distribution System Rehabilitation and Expansion Project, which was funded by the African Development Bank (AfDB) and has undertaken an AfDB review of a Senegal power plant to inform regional energy decisions.

It comprises of five different lots like Rehabilitation of Diesel plant substation, Rehabilitation and Expansion of medium voltage network, low voltage network, and Rehabilitation and Expansion of street lighting and improvement of customer care.

 

Related News

View more

As Alberta electricity generators switch to gas, power price cap comes under spotlight

Alberta Energy-Only Electricity Market faces capacity market debate, AESO price cap review, and coal-to-gas shifts by TransAlta and Capital Power, balancing reliability with volatility as investment signals evolve across Alberta's grid.

 

Key Points

An energy market paying generators only for electricity sold, with AESO oversight and a price cap guiding new capacity.

✅ AESO reviewing $999 per MW-h wholesale price cap.

✅ UCP retained energy-only; capacity market plan cancelled.

✅ TransAlta and Capital Power shift to coal-to-gas.

 

The Kenney government’s decision to cancel the redesign of Alberta’s electricity system to a capacity market won’t side-track two of the province’s largest power generators from converting coal-fired facilities to burn natural gas as part of Alberta’s shift from coal to cleaner energy overall.

But other changes could be coming to the province’s existing energy-only electricity market — including the alteration of the $999 per megawatt-hour (MW-h) wholesale price cap in Alberta.

The heads of TransAlta Corp. and Capital Power Corp. are proceeding with strategies to convert existing coal-fired power generating facilities to use natural gas in the coming years.

Calgary-based TransAlta first announced in 2017 that it would make the switch, as the NDP government was in the midst of overhauling the electricity sector and wind generation began to outpace coal in the province.

At the time, the Notley government planned to phase out coal-fired power by 2030, even as Alberta moved to retire coal by 2023 in practice, and shift Alberta into an electricity capacity market in 2021.

Such a move, made on the recommendation of the Alberta Electric System Operator (AESO), was intended to reduce price volatility and ensure system reliability.

Under the energy-only market, generators receive payments for electricity produced and sold into the grid. In a capacity market, generators are also paid for having power available on demand, regardless of how often they sell energy into the provincial grid.

The UCP government decided last month to ditch plans for a capacity market after consulting with the sector, saying it would be better for consumers.

On a conference call, TransAlta CEO Dawn Farrell said the company will convert coal-fired generating plants to burn gas, although it may alter the mix between simple conversions and switching to so-called “hybrid” plants.

(A hybrid conversion is a larger and more-expensive switch, as it includes installing a new gas turbine and heat-recovery steam generator, but it creates a highly efficient combined cycle unit.)

“Our view is fundamentally that carbon will be priced over the next 20 years no matter what,” she said Friday.

“We cannot get off coal fast enough in this company, and gas right now in Alberta is extremely inexpensive…

“So our coal-to-gas strategy is completely predicated on our belief that it’s not smart to be in carbon-intensive fuels for the future.”

Elsewhere in Canada, the Stop the Shock campaign has advocated for reviving coal power, underscoring ongoing policy debates.

The company said it’s planning the coal-to-gas conversion and re-powering of some or all of the units at its Keephills and Sundance facilities to gas-fired generation sometime between 2020 and 2023.

Similarly, Capital Power CEO Brian Vaasjo said the Edmonton-based company is moving ahead with a project that will allow it to burn both coal and natural gas at its Genesee generating station, even as Ontario’s energy minister sought to explore a halt to natural gas generation elsewhere.

In June, the company announced it would spend an estimated $50 million between 2019 and 2021 to allow it to use gas at the facility.

“What we’re doing is going to be dual fuel, so we will be able to operate 100 per cent natural gas or 100 per cent coal and everything in between,” Vaasjo said in an interview.

“You can expect to see we will be burning coal in the winter when natural gas prices are high, and we will be burning natural gas in summer when gas prices are real low.”

The transition comes as the government’s decision to stick with the energy-only market has been welcomed by players in the industry, and as Alberta's electricity future increasingly leans on wind resources.

A study by electricity consultancy EDC Associates found the capacity market would result in consumers paying an extra $1.4 billion in direct costs in 2021-22, as it required more generation to come online earlier than expected.

These additional costs would have accumulated to $10 billion by 2030, said EDC chief executive Duane-Reid Carlson.

For Capital Power, the decision to stick with the current system makes the province more investable in the future. Vaasjo said there was great uncertainty about the transition to a capacity market, and the possibility of rules shifting further.

Officials with Enmax Corp. said the city-owned utility would not have invested in future generation under the proposed capacity market.

“There is no short-term need (today) for new generation, so we’re just looking at the market and saying, ‘OK, as it evolves, we will see what happens,’” said Enmax vice-president Tim Boston.

Sticking with the energy-only market doesn’t mean Alberta will keep the existing rules.

In a July 25 letter, Alberta Energy Minister Sonya Savage directed AESO chair Will Bridge to examine if changes to the existing market are needed and report back by July 2020.

AESO, which manages the power grid, has been asked to investigate whether the current price cap of $999 per megawatt-hour (MW-h) should be changed.

The price ceiling hasn’t been altered since the energy-only market was implemented by the Klein government about two decades ago.

While allowing prices to go higher would increase volatility, reflecting lessons from Europe’s power crisis about scarcity pricing, during periods of rising demand and limited supply, it would send a signal to generators when investment in new generation is required, said Kent Fellows, a research associate at the University of Calgary’s School of Public Policy.

“Keeping the price (cap) too low could end up costing us more in the long run,” he said.

In a 2016 report, AESO said the province examined raising the price cap to $5,000 per MW-h, but “determined that it was unlikely to be successful in attracting investment due to increased price volatility.”

However, the amount of future generation that will be required in Alberta has been scaled back by the province.

In the United States, the Electricity Reliability Council of Texas (ERCOT) allows wholesale power prices in the state to climb to a cap of $9,000 per megawatt hours as demand rises — as it did Tuesday in the midst of a heat wave, according to Bloomberg.

Jim Wachowich, legal counsel for the Consumers’ Coalition of Alberta, said while few players are exposed to spot electricity prices, he has yet to be convinced raising the cap would be good for Albertans.

“Someone has to show me the evidence, and I suspect that’s what the minister has asked the AESO to do,” he said.

Generators say they believe some tinkering is needed to the energy-only market to ensure new generation is built when it’s required.

“The No. 1 change that the government has to … think about is in pricing,” added Farrell.

“If you don’t have enough of a price signal in an energy-only market to attract new capital, you won’t get new capital — and you’ll run up against the wall.”

 

Related News

View more

UAE’s nuclear power plant connects to the national grid in a major regional milestone

UAE Barakah Nuclear Plant connects Unit 1 to the grid, supplying clean electricity, nuclear baseload power, and lower carbon emissions, with IAEA oversight, FANR regulation, and South Korea collaboration, supporting energy security and economic diversification.

 

Key Points

The UAE Barakah Nuclear Plant is a four-reactor project delivering clean baseload power and reducing CO2.

✅ Unit 1 online; four reactors to supply 25% of UAE electricity

✅ Cuts 21 million tons CO2 annually; clean baseload for grid

✅ FANR-licensed; IAEA and WANO oversight ensure safety

 

Unit 1 of the UAE’s Barakah plant — the Arab world’s first nuclear energy plant in the region — has connected to the national power grid, in a historic moment enabling it to provide cleaner electricity to millions of residents and help reduce the oil-rich country’s reliance on fossil fuels. 

“This is a major milestone, we’ve been planning for this for the last 12 years now,” Mohamed Al Hammadi, CEO of Emirates Nuclear Energy Corporation (ENEC), told CNBC’s Dan Murphy in an exclusive interview ahead of the news.

Unit 1, which has reached 100% power as it steps closer to commercial operations, is the first of what will eventually be four reactors, which when fully operational are expected to provide 25% of the UAE’s electricity and reduce its carbon emissions by 21 million tons a year, according to ENEC. That’s roughly equivalent to the carbon emissions of 3.2 million cars annually.

The Gulf country of nearly 10 million is the newest member of a group of now 31 countries running nuclear power operations. It’s also the first new country to launch a nuclear power plant in three decades, the last being China’s nuclear energy program in 1990.

“The UAE has been growing from an electricity demand standpoint,”  Al Hammadi said. “That’s why we are trying to meet the demand (and) at the same time have it with less carbon emissions.”

The UAE’s electricity mix will continue to include gas and renewable energy, with “the baseload from nuclear,” including emerging next-gen nuclear designs, the CEO added, which he described as a “safe, clean and reliable source of electricity” for the country.

The project is also providing “highly compensated jobs” for the Emiratis and will introduce new industries for the country’s economy, Al Hammadi said. The company noted that it has awarded roughly 2,000 contracts worth more than $4.8 billion for local companies.

International collaboration
The UAE’s nuclear watchdog FANR, the Federal Authority for Nuclear Regulation, granted the operating license for Unit 1 in February, after an extensive inspection process to ensure the plant’s compliance with regulatory requirements. The license is expected to last 60 years. The program also involved collaboration with external bodies including the U.N.’s International Atomic Energy Agency (IAEA) and the government of South Korea, and its pre-start-up review was completed in January by the World Association of Nuclear Operators (WANO). The WANO and the IAEA have conducted over 40 inspection and review missions at Barakah.   

But the project has its critics, particularly some experts from the independent Nuclear Consulting Group non-profit, who have expressed concern about Barakah’s safety features and potential environmental risks.  

In response, ENEC said the “adherence to the highest standards of safety, quality and security is deeply embedded within the fabric of the UAE Peaceful Nuclear Energy Program.”

“The Barakah Plant meets all national and international regulatory requirements and standards for nuclear safety,” a  company statement said. It added that the reactor design had been certified by the Korea Institute of Nuclear Safety, FANR and the US-based Nuclear Regulatory Commission, “demonstrating the robustness of this design for safety and operating reliability.”

Worries of regional proliferation 
The achievement for the UAE is particularly significant given tensions in the wider region over nuclear proliferation. 

Some observers have warned of a regional arms race, though the UAE already partakes in what nuclear energy experts call the “gold standard” of civilian nuclear partnerships: The U.S.-UAE 123 Agreement for Peaceful Civilian Nuclear Energy Cooperation. It allows the UAE to receive nuclear materials, equipment and know-how from the U.S. while precluding it from developing dual-use technology by barring uranium enrichment and fuel reprocessing, the processes required for building a bomb.

By contrast, nearby Iran has suspended its compliance to the multilateral 2015 deal that regulated its nuclear power development and many fear its approach toward bomb-making capability. Meanwhile, Saudi Arabia has voiced its desire to develop a nuclear energy program without adhering to a 123 agreement.

And most recently, in the wake of a historic deal that has seen the UAE become the first Gulf country to normalize relations with Israel, Iran responded by warning the agreement would bring a “dangerous future” for the Emirati government. 

But ENEC and UAE officials emphasize the program’s commitment to safety, transparency and international cooperation, and its necessity for meeting growing electricity demand by cleaner means. 

“The nuclear industry is growing, with milestones around the world being reached, and the UAE is no exception. We are pursuing our electricity demand to meet that in a safe, secure and stable manner, and also doing it in an environmentally friendly way,” Al Hammadi said.

“Having four reactors that will provide 25% of electricity for the nation and will avoid us emitting 21 million tons of CO2 on an annual basis, as part of a broader green industrial revolution approach, is a very serious step to take — and the UAE is not talking about it, it is doing it, and we are reaping the benefits of it as we speak right now.”

 

Related News

View more

N.W.T. green energy advocate urges using more electricity for heat

Taltson Hydro Electric Heating directs surplus hydro power in the South Slave to space heat via discounted rates, displacing diesel and cutting greenhouse gas emissions, with rebates, separate metering, and backup systems shaping adoption.

 

Key Points

An initiative using Taltson's surplus hydro to heat buildings, discount rates replace diesel and cut emissions.

✅ 6.3 cents/kWh heating rate needs separate metering, backup heat

✅ 4-6 MW surplus hydro; outages require diesel; rebates available

✅ Program may be curtailed if new mines or mills demand power

 

A Northwest Territories green energy advocate says there's an obvious way to expand demand for electricity in the territory's South Slave region without relying on new mining developments — direct it toward heating.

One of the reasons the N.W.T. has always had some of the highest electricity rates in Canada is that a small number of people have to shoulder the huge costs of hydro facilities and power plants.

But some observers point out that residents consume as much energy for heat as they do for conventional uses of electricity, such as lighting and powering appliances. Right now almost all of that heat is generated by expensive oil imported from the United States.

The Northwest Territories Power Corporation says the 18-megawatt Taltson hydro system that serves the South Slave typically has four to six megawatts of excess generating capacity, even as record demand in Yukon is reported. It says using some of that to generate heat is a government priority.

But renewable energy advocate and former N.W.T. MP Dennis Bevington, who lives in the South Slave and heats his home using electricity, says the government is not making it easy for people to tap into that surplus to heat their homes and businesses, a debate that some say would benefit from independent planning at the national level.

Discount rate for heating, but there are catches
The power corporation offers hydro electricity from Taltson to use for heating at a much lower price than it charges for electricity generally. The discounted rate is not available to residential customers.

According to the corporation, consumers pay only 6.3 cents per kilowatt hour compared to the regular rate of just under 24 cents, while Manitoba Hydro financial pressures highlight the risks of expanding demand without new generation.

But to distinguish between the two, users are required to cover the cost of installing a separate power meter. Bevington, who developed the N.W.T.'s first energy strategy, says that is an unnecessary expense.

Taltson expansion key to reducing N.W.T.'s greenhouse gas emissions, says gov't
"The billing is how you control that," he said. "You establish an average electrical use in the winter months. That could be the base rate. Then, if you use power in the winter months above that, you get the discount."

Users are also required to have a back-up heating system. Taltson hydro power offers heating on the understanding that when the hydro system is down — such as during power outages or annual summer maintenance of the hydro system — electricity is not available for heating.
The president and CEO of the power corporation says there's a good reason for that. "The diesels are more expensive to run and they're actually greenhouse gas emitting," said Noel Voykin. "The whole idea of this [electric heat] program is to provide clean energy that is not otherwise being used."

According to the corporation, there have been huge savings for the few who have tapped into the hydro system to heat their buildings, and across Canada utilities are exploring novel generation such as NB Power's Belledune seawater project to diversify supply.

It's being used to heat Aurora College's Breynat Hall, and Joseph B. Tyrrell Elementary School and the transportation department garage in Fort Smith, N.W.T. Electricity is also used to heat the Jackfish power plant in the North Slave region.

The corporation says that during a four-year period, this saved more than 600,000 litres of diesel fuel and reduced greenhouse gas emissions by about 1,700 tonnes.

Bevington says the most obvious place to expand the use of electrical heat is to government housing.

"We have a hundred public housing units in Fort Smith," he said. "The government is putting diesel into those units [for heating] and they could be putting in their own electricity."

Heating a tiny part of energy market
The corporation says it sells only about 2.5 megawatts of electricity for heating each year, which is less than four per cent of the power it sells in the region. It says with some upgrades, another two megawatts of electricity could be made available for electrical heat.

Bevington says the corporation could do more to market electricity for heating. Voykin said that's the government's job. There are three programs that offer rebates to residents and businesses converting to electric heating.

If you build it, will they come? N.W.T. gov't hopes hydro expansion will attract investment
There are better options than billion dollar Taltson expansion, say energy leaders
There may be a reason why the government and the corporation are not more aggressively promoting using surplus electricity in the Taltson system for heating, as large hydro ambitions have reopened old wounds in places like Quebec and Newfoundland and Labrador during recent debates.

It is anticipating that new industrial customers may require that excess capacity in the coming years, and experiences elsewhere show that accommodating new energy-intensive customers can be challenging for utilities. Voykin said those potential new customers include a proposed mine at Pine Point and a pellet mill in Enterprise, N.W.T., even as biomass use faces environmental pushback in some regions.

The corporation says any surplus power in the system will be sold at standard rates to any new industrial customers instead of at discount rates for heating. If that requires cutting back on the heating program, it will be cut back.

 

Related News

View more

Physicists Just Achieved Conduction of Electricity at Close to The Speed of Light

Attosecond Electron Transport uses ultrafast lasers and single-cycle light pulses to drive tunneling in bowtie gold nanoantennas, enabling sub-femtosecond switching in optoelectronic nanostructures and surpassing picosecond silicon limits for next-gen computing.

 

Key Points

A light-driven method that manipulates electrons with ultrafast pulses to switch currents within attoseconds.

✅ Uses single-cycle light pulses to drive electron tunneling

✅ Achieves 600 attosecond current switching in nano-gaps

✅ Enables optoelectronic, plasmonic devices beyond silicon

 

When it comes to data transfer and computing, the faster we can shift electrons and conduct electricity the better – and scientists have just been able to transport electrons at sub-femtosecond speeds (less than one quadrillionth of a second) in an experimental setup.

The trick is manipulating the electrons with light waves that are specially crafted and produced by an ultrafast laser. It might be a long while before this sort of setup makes it into your laptop, but similar precision is seen in noninvasive interventions where targeted electrical stimulation can boost short-term memory for limited periods, and the fact they pulled it off promises a significant step forward in terms of what we can expect from our devices.

Right now, the fastest electronic components can be switched on or off in picoseconds (trillionths of a second), a pace that intersects with debates over 5G electricity use as systems scale, around 1,000 times slower than a femtosecond.

With their new method, the physicists were able to switch electric currents at around 600 attoseconds (one femtosecond is 1,000 attoseconds).

"This may well be the distant future of electronics," says physicist Alfred Leitenstorfer from the University of Konstanz in Germany. "Our experiments with single-cycle light pulses have taken us well into the attosecond range of electron transport."

Leitenstorfer and his colleagues were able to build a precise setup at the Centre for Applied Photonics in Konstanz. Their machinery included both the ability to carefully manipulate ultrashort light pulses, and to construct the necessary nanostructures, including graphene architectures, where appropriate.

The laser used by the team was able to push out one hundred million single-cycle light pulses every single second in order to generate a measurable current. Using nanoscale gold antennae in a bowtie shape (see the image above), the electric field of the pulse was concentrated down into a gap measuring just six nanometres wide (six thousand-millionths of a metre).

As a result of their specialist setup and the electron tunnelling and accelerating it produced, the researchers could switch electric currents at well under a femtosecond – less than half an oscillation period of the electric field of the light pulses.

Getting beyond the restrictions of conventional silicon semiconductor technology has proved a challenge for scientists, but using the insanely fast oscillations of light to help electrons pick up speed could provide new avenues for pushing the limits on electronics, as our power infrastructure is increasingly digitized and integrated with photonics.

And that's something that could be very advantageous in the next generation of computers: scientists are currently experimenting with the way that light and electronics could work together in all sorts of different ways, from noninvasive brain stimulation to novel sensors.

Eventually, Leitenstorfer and his team think that the limitations of today's computing systems could be overcome using plasmonic nanoparticles and optoelectronic devices, using the characteristics of light pulses to manipulate electrons at super-small scales, with related work even exploring electricity from snowfall under specific conditions.

"This is very basic research we are talking about here and may take decades to implement," says Leitenstorfer.

The next step is to experiment with a variety of different setups using the same principle. This approach might even offer insights into quantum computing, the researchers say, although there's a lot more work to get through yet - we can't wait to see what they'll achieve next.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.