Looking at the power grid up close

By Grist


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Often referred to as “the world’s biggest machine,” the North American electricity grid as a whole is an integrated network of generators and millions of miles of wires that crisscross the United States and Canada.

It snakes across fields, over mountains, through tunnels, along highways, beneath sidewalks, under rivers and seas. If you live anywhere in Canada or the continental United States, this mega-machine “reaches into your home, your bedroom,” as one writer put it, “and climbs right up into the lamp next to your pillow.”

The grid is designed as a hub-and-spoke system, in which large centralized generators supply electricity to thousands of end users. All told, the U.S. grid has about 300,000 miles of high-voltage transmission lines and 5.2 million miles of local distribution lines. When one cable in a network short-circuits, others nearby will automatically pick up the burden. But if the surrounding cables are also overstressed, they too can fail, causing a cascading effect that can knock out major portions of a network.

In recent years, the U.S. power grid has become increasingly prone to such interruptions. Average temperatures have risen, homes have gotten bigger, and so have air-conditioning demands. Thanks to our technology-rich lifestyles and the inefficiency of our buildings and power plants, Americans consume, per capita, at least 50 percent more electricity annually than the citizens of Europe and Japan.

But we don’t have the infrastructure to support our lavish habits. We’ve seen almost no expansion or evolution of the grid that struggles to sustain our skyrocketing demands. Former Energy Secretary Bill Richardson has explained the problem this way: “We’re a major superpower with a third-world electricity grid.” The average age of the equipment that makes up our grid infrastructure is more than forty years, and many components were designed and installed before World War II. If we’re to see a major shift toward greener, more reliable power sources, we need a simultaneous upgrade in grid transmission technology.

I got a firsthand look at the challenges our power system is facing when I climbed inside the New York City grid. Con EdisonÂ’s chief of underground grid maintenance, Dennis Romano, had agreed to accompany me down below with his crew of electrical engineers to explain what I was seeing. A jovial man with a permanent five oÂ’clock shadow, Romano seemed amused if a bit baffled at my excitement over this brief trip.

In spite of what I’d learned about the grid’s fragility, I had a fanciful notion of what I’d encounter: a vast, orderly chamber 50 feet underground containing thousands of gleaming wires all labeled and mapped according to the neighborhoods and buildings they fed, gauges glowing to indicate the volumes of current coursing on each line — as clean and intricate as the innards of the world’s biggest iMac.

Instead, my descent into a manhole on lower Broadway lasted all of 17 feet — and the shallow tunnel I crouched through opened onto a chamber roughly the size of an average walk-in closet. The floor was covered with a murky pond of street runoff, crumbled asphalt, and garbage fragments, and the air was clammy and foul. The walls revealed a gory cross section of the grid: emerging from dozens of cement ducts was a spaghetti-like tangle of grimy wires pulsing with so much electric current I could see them vibrate, like hoses with liquid gushing through them.

The New York City grid encompasses more than 80,000 miles of cable-enough to circle the globe four times. Peel back the sidewalks of Manhattan and youÂ’ll find a larger concentration of copper than anywhere else on the planet-more, in fact, than in the worldÂ’s largest copper mine. All that metal can be found within 15 feet below street level, sandwiched in with water mains, sewage pipes, and telephone lines. (These pipes and tubes are constantly in need of repair, so they have to be placed close to street level for speedy access.) There is no large central chamber where all the wires are organized, labeled, and monitored; instead, there are some 260,000 manholes throughout the city, each one providing access to the wires feeding just a handful of buildings.

Many of these cables are over fifty years old. As the wires age, they degrade under a battery of stresses. The combination of sweltering heat in the summer and freezing cold in the winter causes them to expand, contract, and weaken. The constant vibrations of the city and its underworld-rumbling subways, feet pounding on pavement, incessant traffic-can wreak havoc over time. When water mains break and sewage lines overflow, they can soak and erode grid equipment. When salt is scattered on snowy streets, it often eventually drips into street cracks and manholes, eating away at the cablesÂ’ insulation. Equally common is a nick in a cable from a construction workerÂ’s jackhammer or backhoe.

Any one of these burdens can overstress and shut down a wire. But the biggest challenge facing New York City is its outsized electricity demand, which is growing at a rate of nearly 2 percent a year. That doesn’t sound like much, but it translates to an additional annual load of 200 megawatts-enough to power nearly a quarter million homes or a midsized city. “It’s like moving Albany onto the New York City grid every year,” Con Edison’s president later told me. That’s a big challenge when you have a system as congested as Con Ed’s.

“See what I mean? The grid is running out of room,” Dennis Romano said as we huddled in the dank manhole, gesturing at a mass of wires so dense it was like a Friday afternoon traffic jam at the mouth of the Holland Tunnel. “There’s just no space down here to put more copper.” The lines, he added, can only carry a finite amount of electricity: “You can’t put ten pounds of baloney in a five-pound bag.” Romano was describing gridlock in the most literal sense-the grid in its current form is reaching a physical threshold, meaning it can’t be built out any further.

“At the rate our demands are growing,” Romano said, “we could outgrow the grid in under ten years.” When we ventured back up to street level, I could see why: New York was voraciously guzzling power. Bank machines were whirring, flat-screen monitors were flickering, and an Old Navy store had flung its doors wide open, sending a misty plume of air-conditioning out into the stifling 90-degree heat. Across the way, Banana Republic and Bloomingdale’s were doing the same. “That right there,” said Romano, nodding toward the open doors, “is why the grid gets hammered in summer months. People assume we can air-condition the streets. They just don’t think about it.”

Lou Rana, Con Ed’s president, did offer some encouraging news about the direction of the energy industry today when we discussed his plans to renovate New York City’s complex, aging grid. For nearly two hours, Rana excitedly discussed the “smart grid,” which he described as a “high-tech, super-efficient, ultra-reliable, self-healing,... clean, green electricity machine.”

Con Ed has already been experimenting piecemeal with some components of a smart grid, which Rana mapped out for me, drawing squiggly lines on a whiteboard. HeÂ’s been testing superconductor wires that carry far bigger loads than do the current copper cables and reduce the energy lost in transmission from 10 percent to less than 2 percent.

Rana’s engineers are installing nanosensors that can monitor electrical current flows remotely, allowing grid operators to track and contain power surges before they begin to cascade. Rana is also developing a plan to obtain 20 percent of New York’s City power supply from small-scale distributed power sources—solar panels and clean-burning microplants fueled by natural gas, for instance — installed on apartment and office buildings. This would help address the problem of building big new power plants and transmission lines on extremely limited real estate.

None of these ideas can be implemented on a large-scale basis without a major investment. A full smart-grid conversion would cost tens of billions of dollars for New York City alone. It remains to be seen who, if anyone, will be willing to pay for such a change. New York consumers famously resist rate hikes, and the stateÂ’s coffers are running low. Even with sufficient funds, itÂ’s not clear whether the system could be installed in time before the gridÂ’s demands finally outgrow supply, as ever more of its aging components collapse under pressure. The easier path would be to continue replacing the grid piecemeal., copper wire by copper wire. But this wonÂ’t do in the long run. Without the smart grid, more and bigger blackouts could lie ahead as demand grows in a system with limited capacity for expanded supply.

The United States is expected to see a 29 percent growth in electricity demands between now and 2030. But that number doesnÂ’t take into account a vast new market that could open up: electric vehicles. As hybrid cars are growing in popularity and new plug-in models are soon to be introduced, the futurists of today are envisioning a century in which all transportation is powered by electricity. The whole energy system, they believe, will be unified under the flow of electrons.

This seems almost laughable given the current fragility of the U.S. electricity supply system. How, I wondered, can we confidently move toward an all-electric future if weÂ’re operating on a Third World electricity grid? One way or another, by necessity if not by choice, the archaic system of plants and cables has to be rebuilt. Will it be replaced with the same old twentieth-century fossil fuels, mechanical switches, and copper wires? Or will we opt for a smart grid and usher in a generation of clean, sustainable technologies?

“The mind can not conceive,” said Thomas Edison in 1916, “what man will do in the twentieth century with his chained lightning.” And a lot we did, to be sure.

But now it’s time to start conceiving what we’ll do in the 21st century — and there’s no time to waste.

Related News

Egypt's renewable energy to reach 6.6 GW by year-end

Egypt Renewable Energy Expansion targets solar and wind power projects to diversify the energy mix, adding 6.6 GW by 2020 and reaching 8,200 MW, with UK cooperation, grid upgrades, and investment in the electricity sector.

 

Key Points

A plan to boost solar and wind by 6.6 GW by 2020, reaching 8,200 MW and diversifying Egypt's energy mix.

✅ Adds 6.6 GW by 2020; targets 8,200 MW total capacity

✅ Focus on solar, wind, grid upgrades, and investment

✅ UK-Egypt cooperation in electricity sector projects

 

Egypt is planning to expand into renewable energy projects in a bid to increase its contribution to the energy mix, in step with global records being set in renewables, and amid Saudi Arabia’s 60 GW drive in the region, the country’s minister of electricity and renewable energy Mohamed Shaker said.

Renewable power is expected to add 6.6 gigawatts (GW) by the end of 2020, a scale comparable to Saudi wind expansion underway, with plans to reach 8,200 megawatts (MW) after the completion of the renewable energy projects currently under consideration, reflecting gains seen since IRENA’s 2016 record year for renewables, Shaker added in a statement on Tuesday, even as regional challenges persist.

This came during the minister’s video-conference meeting with the British ambassador to Egypt Geoffrey Adams to explore the potential means for cooperation between the two countries in the electricity sector, including lessons from the UK project backlog now affecting investments and from Ireland’s green-electricity goals being pursued.

 

Related News

View more

Hydro One shares jump 5.7 per cent after U.S. regulators reject $6.7B takeover

Hydro One Avista takeover rejection signals Washington regulators blocking a utility acquisition over governance risk, EPS dilution, and balance sheet impact, as investors applaud share price gains and a potential US$103M break fee.

 

Key Points

A regulator-led block of Hydro One's Avista bid, citing EPS dilution, balance sheet risk, and governance concerns.

✅ Washington denies approval; Idaho, Oregon decisions pending.

✅ EPS dilution avoided; balance sheet strength preserved.

✅ Shares rise 5.7%; US$103M break fee if deal collapses.

 

Opposition politicians may not like it but investors are applauding the rejection of Hydro One Ltd.'s $6.7-billion Avista takeover of U.S.-based utility Avista Corp.

Shares in the power company controlled by the Ontario government, which has also proposed a bill redesign to simplify statements, closed at $21.53, up $1.16 or 5.7 per cent, on the Toronto Stock Exchange on Thursday.

On Wednesday, Washington State regulators said they would not allow Ontario's largest utility to buy Avista over concerns about political risk that the provincial government, which owns 47 per cent of Hydro One's shares, might meddle in Avista's operations.

Financial analysts had predicted investors would welcome the news because the deal, announced in July 2017, would have eroded earnings per share and weakened Hydro One's balance sheet.

"The Washington regulator's denial of Avista is a positive development for the shares, in our opinion," said analyst Ben Pham of BMO Capital Markets in a report on Wednesday.

"While this may sound odd, we note that the Avista deal is expected to be EPS dilutive and result in a weaker balance sheet for (Hydro One). Not acquiring Avista and refocusing its attention on its core Ontario franchise ... along with related interprovincial arrangements such as the Ontario-Quebec electricity deal under discussion would likely be viewed positively if the deal ultimately breaks."

Decisions are yet to come from Idaho and Oregon state regulators, but Washington was probably the most important as the state contains customers making up about 60 per cent of Avista's rate base, Pham said.

He pointed out that a US$103-million break fee is to be paid to Avista if the deal collapses due to a failure to obtain regulatory approval.

CIBC analyst Robert Catellier raised his 12-month Hydro One target price by 25 cents and said many shareholders will feel "relieved" that the deal had failed.

He warned that the company's earnings power could deteriorate as the province seeks to reduce power bills by 12 per cent, despite an Ontario-Quebec hydro deal that may not lower costs.

 

Related News

View more

Wind power making gains as competitive source of electricity

Canada Wind Energy Costs are plunging as renewable energy auctions, CfD contracts, and efficient turbines drive prices to 2-4 cents/kWh across Alberta and Saskatchewan, outcompeting grid power via competitive bidding and improved capacity factors.

 

Key Points

Averaging 2-4 cents/kWh via auctions, CfD support, and bigger turbines, wind is now cost-competitive across Canada.

✅ Alberta CfD bids as low as 3.9 cents/kWh.

✅ Turbine outputs rose from 1 MW to 3.3 MW per tower.

✅ Competitive auctions cut costs ~70% over nine years.

 

It's taken a decade of technological improvement and a new competitive bidding process for electrical generation contracts, but wind may have finally come into its own as one of the cheapest ways to create power.

Ten years ago, Ontario was developing new wind power projects at a cost of 28 cents per kilowatt hour (kWh), the kind of above-market rate that the U.K., Portugal and other countries were offering to try to kick-start development of renewables. 

Now some wind companies say they've brought generation costs down to between 2 and 4 cents — something that appeals to provinces that are looking to significantly increase their renewable energy deployment plans.

The cost of electricity varies across Canada, by province and time of day, from an average of 6.5 cents per kWh in Quebec to as much as 15 cents in Halifax.

Capital Power, an Edmonton-based company, recently won a contract for the Whitla 298.8-megawatt (MW) wind project near Medicine Hat, Alta., with a bid of 3.9 cents per kWh, at a time when three new solar facilities in Alberta have been contracted at lower cost than natural gas, underscoring the trend. That price covers capital costs, transmission and connection to the grid, as well as the cost of building the project.

Jerry Bellikka, director of government relations, said Capital Power has been building wind projects for a decade, in the U.S., Alberta, B.C. and other provinces. In that time the price of wind generation equipment has been declining continually, while the efficiency of wind turbines increases.

 

Increased efficiency

"It used to be one tower was 1 MW; now each turbine generates 3.3 MW. There's more electricity generated per tower than several years ago," he said.

One wild card for Whitla may be steel prices — because of the U.S. and Canada slapping tariffs on one other's steel and aluminum products. Whitla's towers are set to come from Colorado, and many of the smaller components from China.

 

Canada introduces new surtaxes to curb flood of steel imports

"We haven't yet taken delivery of the steel. It remains to be seen if we are affected by the tariffs." Belikka said.

Another company had owned the site and had several years of meteorological data, including wind speeds at various heights on the site, which is in a part of southern Alberta known for its strong winds.

But the choice of site was also dependent on the municipality, with rural Forty Mile County eager for the development, Belikka said.

 

Alberta aims for 30% electricity from wind by 2030

Alberta wants 30 per cent of its electricity to come from renewable sources by 2030 and, as an energy powerhouse, is encouraging that with a guaranteed pricing mechanism in what is otherwise a market-bidding process.

While the cost of generating energy for the Alberta Electric System Operator (AESO) fluctuates hourly and can be a lot higher when there is high demand, the winners of the renewable energy contracts are guaranteed their fixed-bid price.

The average pool price of electricity last year in Alberta was 5 cents per kWh; in boom times it rose to closer to 8 cents. But if the price rises that high after the wind farm is operating, the renewable generator won't get it, instead rebating anything over 3.9 cents back to the government.

On the other hand, if the average or pool price is a low 2 cents kWh, the province will top up their return to 3.9 cents.

This contract-for-differences (CfD) payment mechanism has been tested in renewable contracts in the U.K. and other jurisdictions, including some U.S. states, according to AESO.

 

Competitive bidding in Saskatchewan

In Saskatchewan, the plan is to double its capacity of renewable electricity, to 50 per cent of generation capacity, by 2030, and it uses an open bidding system between the private sector generator and publicly owned SaskPower.

In bidding last year on a renewable contract, 15 renewable power developers submitted bids, with an average price of 4.2 cents per kWh.

One low bidder was Potentia with a proposal for a 200 MW project, which should provide electricity for 90,000 homes in the province, at less than 3 cents kWh, according to Robert Hornung of the Canadian Wind Energy Association.

"The cost of wind energy has fallen 70 per cent in the last nine years," he says. "In the last decade, more wind energy has been built than any other form of electricity."

Ontario remains the leading user of wind with 4,902 MW of wind generation as of December 2017, most of that capacity built under a system that offered an above-market price for renewable power, put in place by the previous Liberal government.

In June of last year, the new Conservative government of Doug Ford halted more than 700 renewable-energy projects, one of them a wind farm that is sitting half-built, even as plans to reintroduce renewable projects continue to advance.

The feed-in tariff system that offered a higher rate to early builders of renewable generation ended in 2016, but early contracts with guaranteed prices could last up to 20 years.

Hornung says Ontario now has an excess of generating capacity, as it went on building when the 2008-9 bust cut market consumption dramatically.

But he insists wind can compete in the open market, offering low prices for generation when Ontario needs new  capacity.

"I expect there will be competitive processes put in place. I'm quite confident wind projects will continue to go ahead. We're well positioned to do that."

 

Related News

View more

UK Anticipates a 16% Decrease in Energy Bills in April

UK Energy Price Cap Cut 2024 signals relief as wholesale gas prices fall; Ofgem price cap drops per Cornwall Insight, aided by LNG supply, mild winter, despite Red Sea tensions and Ukraine conflict impacts.

 

Key Points

A forecast cut to Great Britain's Ofgem price cap as wholesale gas falls, easing typical annual household bills in 2024.

✅ Cap falls from £1,928 to £1,620 in April 2024

✅ Forecast £1,497 in July, then about £1,541 from October

✅ Drivers: lower wholesale gas, LNG supply, mild winter

 

Households in Great Britain are set to experience a significant reduction in energy costs this spring, with bills projected to drop by over £300 annually. This decrease is primarily due to a decline in wholesale gas prices, offering some respite to those grappling with the cost of living crisis.

Cornwall Insight, a well-regarded industry analyst, predicts a 16% reduction in average bills from the previous quarter, potentially reaching the lowest levels since the onset of the Ukraine conflict.

The industry’s price cap, indicative of the average annual bill for a typical household, is expected to decrease from the current £1,928, set earlier this month, to £1,620 in April – a reduction of £308 and £40 less than previously forecasted in December, as ministers consider ending the gas-electricity price link to improve market resilience.

Concerns about escalating tensions in the Red Sea, where Houthi rebels have disrupted global shipping, initially led analysts to fear an increase in wholesale oil prices and subsequent impact on household energy costs.

Contrary to these concerns, oil prices have remained relatively stable, and European gas reserves have been higher than anticipated during a mild winter, with European gas prices returning to pre-Ukraine war levels since November.

Cornwall Insight anticipates that energy prices will continue to be comparatively low through 2024. They predict a further decline to £1,497 for a typical annual bill from July, followed by a slight increase to £1,541 starting in October.

This forecast is a welcome development for Britons who have been dealing with increased expenses across various sectors, from food to utilities, amidst persistently high inflation rates, with energy-driven EU inflation hitting lower-income households hardest across member states.

Energy bills saw a steep rise in 2021, which escalated further due to the Ukraine conflict in 2022, driving up wholesale gas prices. This surge prompted government intervention to subsidize bills, with the UK price cap estimated to cost around £89bn to the public purse, capping costs to a typical household at £2,500.

Cornwall Insight noted that the supply of liquified natural gas to Europe had not been as adversely affected by the Red Sea disruptions as initially feared. Moreover, the UK has been well-supplied with gas from the US, which has become a more significant supplier since the Ukraine war, even as US electricity prices have risen to multi-decade highs. Contributing factors also include lower gas prices in Asia, mild weather, and robust gas availability.

Craig Lowrey, a principal consultant at Cornwall Insight, remarked that concerns about Red Sea events driving up energy prices have not materialized, allowing households to expect a reduction in prices.

On Monday, the next-month wholesale gas price dropped by 4% to 65p a therm.

However, Lowrey cautioned that a complete return to pre-crisis energy bill levels remains unlikely due to ongoing market impacts from shifting away from Russian energy sources and persistent geopolitical tensions, as well as policy changes such as Britain’s Energy Security Bill shaping market reforms.

Richard Neudegg, director of regulation at Uswitch, welcomed the potential further reduction of the price cap in April. However, he pointed out that this offers little solace to households currently struggling with high winter energy costs during the winter. Neudegg urged Ofgem, the energy regulator, to prompt suppliers to reintroduce more competitive and affordable fixed-price deals.

 

Related News

View more

Octopus Energy Makes Inroads into US Renewables

Octopus Energy US Renewables Investment signals expansion into the US clean energy market, partnering with CIP for solar and battery storage projects to decarbonize the grid, boost resilience, and scale smart grid innovation nationwide.

 

Key Points

Octopus Energy's first US stake in solar and battery storage with CIP to expand clean power and grid resilience.

✅ Partnership with Copenhagen Infrastructure Partners

✅ Portfolio of US solar and battery storage assets

✅ Supports decarbonization, jobs, and grid modernization

 

Octopus Energy, a UK-based renewable energy provider known for its innovative approach to clean energy solutions and the rapid UK offshore wind growth shaping its home market, has announced its first investment in the US renewable energy market. This strategic move marks a significant milestone in Octopus Energy's expansion into international markets and underscores its commitment to accelerating the transition towards sustainable energy practices globally.

Investment Details

Octopus Energy has partnered with Copenhagen Infrastructure Partners (CIP) to acquire a stake in a portfolio of solar and battery storage projects located across the United States. This investment reflects Octopus Energy's strategy to diversify its renewable energy portfolio and capitalize on opportunities in the rapidly growing US solar-plus-storage sector, which is attracting record investment.

Strategic Expansion

By entering the US market, Octopus Energy aims to leverage its expertise in renewable energy technologies and innovative energy solutions, as companies like Omnidian expand their global reach in project services. The partnership with CIP enables Octopus Energy to participate in large-scale renewable projects that contribute to decarbonizing the US energy grid and advancing climate goals.

Commitment to Sustainability

Octopus Energy's investment aligns with its overarching commitment to sustainability and reducing carbon emissions. The portfolio of solar and battery storage projects not only enhances energy resilience but also supports local economies through job creation and infrastructure development, bolstered by new US clean energy manufacturing initiatives nationwide.

Market Opportunities

The US renewable energy market presents vast opportunities for growth, driven by favorable regulatory policies, declining technology costs, and increasing demand for clean energy solutions, with US solar and wind growth accelerating under supportive plans. Octopus Energy's entry into this market positions the company to capitalize on these opportunities and establish a foothold in North America's evolving energy landscape.

Innovation and Impact

Octopus Energy is known for its customer-centric approach and technological innovation in energy services. By integrating smart grid technologies, digital platforms, and consumer-friendly tariffs, Octopus Energy aims to empower customers to participate in the energy transition actively.

Future Prospects

Looking ahead, Octopus Energy plans to expand its presence in the US market and explore additional opportunities in renewable energy development and energy storage, including surging US offshore wind potential in the coming years. The company's strategic investments and partnerships are poised to drive continued growth, innovation, and sustainability across global energy markets.

Conclusion

Octopus Energy's inaugural investment in US renewables underscores its strategic vision to lead the transition towards a sustainable energy future. By partnering with CIP and investing in solar and battery storage projects, Octopus Energy not only strengthens its position in the US market but also reinforces its commitment to advancing clean energy solutions worldwide. As the global energy landscape evolves, including trillion-dollar offshore wind outlook, Octopus Energy remains dedicated to driving positive environmental impact and delivering value to stakeholders through renewable energy innovation and investment.

 

Related News

View more

Ex-SpaceX engineers in race to build first commercial electric speedboat

Arc One Electric Speedboat delivers zero-emission performance, quiet operation, and reduced maintenance, leveraging battery propulsion, aerospace engineering, and venture-backed innovation to cut noise pollution, fuel costs, and water contamination in high-performance marine recreation.

 

Key Points

Arc One Electric Speedboat is a battery-powered, zero-emission craft offering quiet, high-performance marine cruising.

✅ 475 hp, 24 ft hull, about 40 mph top speed

✅ Cuts noise, fumes, and water contamination vs gas boats

✅ Backed by Andreessen Horowitz; ex-SpaceX engineers

 

A team of former SpaceX rocket engineers have joined the race to build the first commercial electric speedboat.

The Arc Boat company announced it had raised $4.25m (£3m) in seed funding to start work on a 24ft 475-horsepower craft that will cost about $300,000.

The LA-based company, which is backed by venture capital firm Andreessen Horowitz (an early backer of Facebook and Airbnb), said the first model of the Arc One boat would be available for sale by the end of the year.

Mitch Lee, Arc’s chief executive, said he wanted to build electric boats because of the impact conventional petrol- or diesel-powered boats have on the environment.

“They not only get just two miles to the gallon, they also pump a lot of those fumes into the water,” Lee said. “In addition, there is the huge noise pollution factor [of conventional boats] and that is awful for the marine life. With gas-powered boats it’s not just carbon emissions into the air, it’s also polluting the water and causing noise pollution. Electric boats, like electric ships clearing the air on the B.C. coast, eliminate all that.”

Lee said electric vessels would also reduce the hassle of boat ownership. “I love being out on the water, being on a boat is so much fun, but owning a boat is so awful,” he said. “I have always believed that electric boats make sense. They will be quicker, quieter and way cheaper and easier to operate and maintain, with access options like an electric boat club in Seattle lowering barriers for newcomers.”

While the first models will be very expensive, Lee said the cost was mostly in developing the technology and cheaper versions would be available in the future, mirroring advances in electric aviation seen across the industry. “It is very much the Tesla approach – we are starting up market and using that income to finance research and development and work our way down market,” he said.

Lee said the technology could be applied to larger craft, and even ferries could run on electricity in the future, as projects for battery-electric high-speed ferries begin to scale.

“We started in February with no team, no money and no warehouse,” he said. “By December we are going to be selling the Arc One, and we are hiring aggressively because we want to accelerate the adoption of electric boats across a whole range of craft, including an electric-ready ferry on Kootenay Lake.”

Lee founded the company with fellow mechanical engineer Ryan Cook. Cook, the company’s chief technology officer, was previously the lead mechanical engineer at Elon Musk’s space exploration company SpaceX where he worked on the Falcon 9 rocket, the world’s first orbital class reusable rocket. In parallel, Harbour Air's electric aircraft highlights cross-sector electrification. Apart from Lee, all of Arc’s employees have some experience working at SpaceX.

The Arc boat, which would have a top speed of 40 mph, joins a number of startups rushing to make the first large-scale production of electric-powered speedboats, while a Vancouver seaplane airline demonstrates complementary progress with a prototype electric aircraft. The Monaco Yacht Club this month held a competition for electric boat prototypes to “instigate a new vision and promote all positive approaches to bring yachting into line” with global carbon dioxide emission reduction targets. Sweden’s Candela C-7 hydrofoil boat was crowned the fastest electric vessel.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified